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SUMMARY

The unsteady forces on a square cylinder in sinusoidally oscillating flows with non-zero-mean velocities
are investigated numerically by using a weakly compressible-flow method with three-dimensional large
eddy simulations. The major parameters in the analysis are Keulegan–Carpenter number (KC) and the
ratio between the amplitude and the mean velocities of the approaching flow (AR). By varying the values
of KC and AR the resulting drag and lift of the cylinders are analyzed systematically at two selected
approaching-flow attack angles (0 and 22.5◦). In the case of the non-zero attack angle, results show that
both the drag and lift histories can be adequately described by Morison equations. However, Morison
equations fail to correctly describing the lift history as the attack angle is zero. In addition, when the
ratio of AR/KC is near the Strouhal number of the bluff-body flow, the resulting drag is promoted due
to the occurrence of resonance. Based on the results of systematic analyses, finally, the mean and inertia
force coefficients at the two selected attack angles are presented as functions of KC and AR based on the
Morison relationships. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of unsteady fluid forces on a bluff body in an oscillating flow is an interesting
engineering subject. In terms of fluid dynamics of bodies in oscillatory flows, there are some
differences between the vortex motions and induced forces from steady uniform flow. By far, the
forces acting on structures and the flow patterns around bluff bodies, such as oscillating bodies in
a stationary or an unsteady flow and stationary bodies in an unsteady oscillating flow, have been
discussed in the fields of aerospace, civil and coastal engineering. Since there are many examples
of structural damages caused by such forces, extensive investigations are needed to explore the
mechanism of the problems.

In the field of coastal engineering, to evaluate the load on piers of near-shore structures under
wave actions, the analyses are generally performed under a simplified condition of a sinusoidal
uniform flow past a two-dimensional cylinder. Since most of these studies consider the situations
that the approaching flows possess zero-mean velocities, it is then interesting to explore how the
cylinder load behaves when the approaching flows are associated with non-zero-mean velocities. In
particular, the analysis can provide useful information for wind load designs in high-rise buildings
under the action of gust wind.

Physically, as a flow passes a cylinder with a blunt shape, separation generally occurs due to
the effect of negative pressure gradients. The separation lines can roll and form the so-called
Karman vortices. Consequently, the flow around the body always behaves unsteadily, even when
the approaching flow is steady and uniform. In the case of an oscillating approaching flow, the
mechanism of the generated vortices can be affected by the action of approaching-flow acceleration
and deceleration, and further lead to a change of the resulting force on the body. More critically,
as the approaching-flow variation is periodic, the extent of the change may become significant as
the approaching-flow frequency is close to the shedding frequency. Under such a condition, the
extent of the mean and fluctuating loads can be promoted due to the effect of resonance.

To conduct an analysis of an unsteady flow past a cylinder experimentally is not easy. This
is mainly due to the fact that the variation of the approaching flow is difficult to be accurately
controlled. In contrast, the application of numerical simulations does not suffer from such technical
difficulties. Accordingly, numerical analyses are performed to investigate the flow problem. In this
study, the major concerns are the time histories of the drag and lift of the cylinder under various
variation patterns of the approaching flow with non-zero-mean velocities. By varying the mean
and amplitude velocities and the period of the approaching flow, the results can then be analyzed
on a systematic basis.

2. THEORETICAL BACKGROUND

For a sinusoidal uniform flow past a cylinder, Morison et al. [1] proposed a set of theoretical
descriptions about the histories of drag and lift forces on the two-dimensional body (per unit
span-wise length) as follows:

FD= 1

2
�DCDU |U |+�AC̃D

dU

dt
(1)

FL= 1

2
�DCLU |U |+�AC̃L

dU

dt
with U (t)=U0+Um sin(2�t/T ) (2)
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where U0 and Um are, respectively, the mean and amplitude speeds of the approaching flow; T is
the oscillation period; A and D are, respectively, the cross-sectional area and width of the cylinder;
CD and CL denote the mean drag and lift coefficients; C̃D and C̃L represent the inertia coefficients
of the unsteady drag and lift forces.

In the problem, an important parameter to describe the features of the sinusoidal approaching
flow is the Keulegan–Carpenter number [2], defined as KC=UmT/D. It has been widely used by
researchers to characterize the variation pattern of the unsteady approaching flow.

3. RELATED STUDIES

There are a number of studies regarding cylinders in an oscillating flow field. Most of them
concentrated on problems with zero-mean approaching-flow velocities. In the cases of zero-mean
sinusoidal approaching flows, typically, Williamson [3] observed the motions of vortices around
single circular cylinders and pairs of cylinders in a U-shape oscillating-flow tunnel. Together with
the force measurement results, the observed flow patterns within different ranges of KC were
used to explain how the lift and drag were influenced by cylinder proximity and the extent of
approaching-flow unsteadiness. Sarpkaya [4] performed similar U-shape water tunnel experiments
and the result of drag measurements on circular cylinders were used to check the validity of the
Stokes–Wang analysis. Okajima et al. [5] measured the forces on circular and square cylinders at
a zero approaching-flow attack angle in a U-tube water tank with a wide range of KC variation
(1–90). Lam and Dai [6] applied PIV techniques to monitor the development of vortex structure of
an oscillating circular cylinder in a water tank at low KC values. Zheng and Dalton [7] adopted a
numerical method to simulate oscillating flows past a square cylinder at low KC values (up to 5) at
two attack angles (0 and 45◦) and compared the numerical predictions with the measurement results
from Bearman et al. [8]. Nomura et al. [9] measured the forces on a square cylinder impinged
by an unsteady jet with non-zero-mean velocities at two attack angles (0 and 22.5◦). It was found
that the drag history could be explained by Morison equations. Since the instantaneous flow field
was not measured in the study, its effect on the resulting drag history was not discussed in more
detail.

4. PROGRAM DESCRIPTION

In the study, a series of numerical simulations were conducted to explore the forces on a square
cylinder in a periodically oscillating flow field. As shown in Figure 1, the problem of a sinusoidal
flow past a square cylinder with a non-zero-mean velocity at a high Reynolds number (Re=
U0D/�), typically of 107, is investigated. Two typical attack angles (�=0 and 22.5◦) are selected
in the analysis. By varying the KC value and the amplitude velocity ratio (AR =Um/U0), the
resulting unsteady forces on the cylinder as well as the relationship between the forces and the
surrounding flow field are analyzed to gain additional insight into the analysis of related engineering
problems.
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Figure 1. Sketch of the problem.

5. NUMERICAL METHOD

The simulations adopt a weakly-compressible-flow method [10] and a dynamic subgrid-scale
turbulence model [11]. In the method, the continuity and momentum equations are [10]

�p
�t

+k∇ ·V=0 (3)

�V
�t

+V ·∇V=−∇ p

�
+∇ ·[(�+�t )∇V] (4)

where p, V and t denote, respectively, pressure, velocity and time; k is the bulk modulus of
elasticity of air. � and �t are, respectively, the laminar and turbulent viscosities, and the latter is
determined according to a dynamic subgrid-scale turbulence model proposed by Germano et al.
[11]. Accordingly, the turbulent viscosity is obtained as

�t =(CS�)2
√
2Si j Si j where Si j = 1

2

(
�ui
�x j

+ �u j

�xi

)
(5)

where CS,� and Si j represent, respectively, the proportionality coefficient, the filter width and the
strain tensor. Two filters (grid and test filters) are used to calculate CS during the computation
process. The width of the test filter is chosen as twice that of the grid filter. To avoid numerical
instability due to an extensive variation of CS in time and space, spatial averaging in the homoge-
neous direction is made and interpolation is used for CS distribution between the test (coarse) and
grid (fine) filters. A three-dimensional finite volume method with a collocated grid arrangement is
used to solve the equations of motion. Second-order accuracy in space is used in the discretized
equations of Equations (3) and (4), and the Crank–Nicolson scheme is used in time integration.

In the numerical simulations, three-dimensional flow computations are carried out in a 21D×
13D×10D rectangular domain and the results on the middle plane in the span-wise direction of
the cylinder are taken as the basis of the analysis of the two-dimensional problem. Figure 2 depicts
a typical computational mesh system (266×96) on the two-dimensional (x–y) plane.
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Figure 2. Typical computational mesh (266×96grids).

Appropriate values of pressures and velocities are specified at exterior cells (or phantom cells)
outside of the boundaries to reflect the physical nature of the boundaries. At the cylinder surface, a
no-slip condition is used. At the side boundaries, the pressures and velocities at the phantom cells
are specified according to a zero-gradient assumption in the direction normal to the boundaries.
Similar zero-gradient boundary specifications are set at the span-wise end sections. At the inflow
section, prescribed unsteady velocities are imposed and a zero-gradient condition is applied for
pressure specifications. At the outflow boundary, on the other hand, a zero-gradient condition is
used for the velocities and the sectional average pressure is set as the reference pressure of the
instantaneous flow field.

6. VERIFICATIONS

To verify the accuracy of the numerical predictions, preliminary simulations of a steady uniform
flow past a square cylinder at a zero attack angle are conducted. Based on the results in the middle
span-wise section of three-dimensional calculations (266×96×86grids), Table I illustrates the
predicted mean and root-mean-square drag and lift coefficients as well as the Strouhal number
(St= fs D/Uo, fs being the shedding frequency), compared with the experimental results by Lee
[12]. It can be seen that good agreement is obtained.

It also shows in Table II that the span-wise local and averaged quantities are very close to
those in the middle section. To examine the span-wise flow behavior in the same case with a
steady approaching flow, Figure 3 illustrates the correlation coefficients of the velocity histories
at a selected location (about 1.6D downstream of the leeward cylinder surface near the center
line). The auto-correlation plot (R0,0), associated with the middle section results, indicates that
the normalized time lag cycle (8.20) is equal to the reciprocal of the Strouhal number (0.122). In
addition, the cross correlations of the results between two different span-wise sections (R0,−4D
and R0,+2D) show that the plots are similar but with certain time lags. Accordingly, one can see
that the selected span-wise domain size (10D) is large enough to describe the coherent structure
of vortices in the span-wise direction.
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Table I. Comparison of predicted and experimental results of a square
cylinder in steady approaching flows (�=0◦).

Re CD C ′
D C ′

L St

Experimental [12] 1.76×105 2.05 0.22 1.22 0.12
Predicted 1.76×105 2.046 0.223 1.213 0.122
(266×96×86mesh)
Relative error (%) — 0.19 1.36 0.25 1.67

Table II. Comparison of results at various span-wise cross sections.

Span-wise location (z) Re CD C ′
D C ′

L St

−4D 107 2.043 0.220 1.212 0.121
−2D 107 2.044 0.222 1.213 0.122
0D (middle section) 107 2.045 0.222 1.213 0.122
4D 107 2.045 0.222 1.213 0.122
2D 107 2.043 0.220 1.213 0.121
−2D to 2D (average) 107 2.045 0.222 1.213 0.122
−4D to 4D (average) 107 2.044 0.221 1.213 0.122
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Figure 3. Correlations of lift coefficients between selected span-wise sections.

At a Reynolds number of 107, Table III shows the corresponding results with three mesh sizes
(186×68×60,266×96×86 and 400×150×130). It is found that the 266×96×86 mesh is fine
enough for the analysis of the problem.
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Table III. Comparison of predictions in steady approaching flows with different meshes.

Mesh Re CD C ′
D C ′

L St

186×68×60 107 2.042 0.218 1.211 0.117
266×96×86 107 2.046 0.223 1.213 0.122
400×150×130 107 2.046 0.223 1.213 0.122

KC

Fo
rc

e
C

oe
ff

ci
en

t

0 5 10 15 20 25 30
0.0

2.0

4.0

6.0

8.0

10.0

C (Calculated)

C (Calculated)

C (Measured, [8])

C (Measured, [8])
~

~

~

~

C (Measured, [5])

C (Measured, [5])

C (Measured, [8])

C (Measured, [8])

Figure 4. Comparison of force coefficients.

Table IV. Comparison of predicted and experimental results (Re=1.4×104).

CD C̃D CL C̃L

Attack angle KC Exp. [9] Cal. Exp. [9] Cal. Exp. [9] Cal. Exp. [9] Cal.

0◦ 52 0.88 0.90 4.00 4.03 — — — —
106 0.88 0.91 4.00 4.07 — — —

22.5◦ 52 0.56 0.54 2.50 2.46 0.26 0.25 1.70 1.67
106 0.56 0.56 2.50 2.46 0.26 0.26 1.70 1.71

Additional numerical computations are performed in certain selected cases of a square cylinder in
sinusoidal approaching flows with zero-mean velocities. After obtaining the calculated drag and lift
histories, the mean and inertia force coefficients associated with Morison equations are determined
by performing least-square regressions according to Equations (1) and (2). Figure 4 shows the
predicted force coefficients compared with the experimental results from Okajima et al. [5] and
Bearman et al. [8]. The good agreement also shows the accuracy of the numerical predictions.
Further calculations are carried out in the cases of Nomura et al. [9]. It indicates in Table IV that
the results are again well predicted.
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7. RESULTS

After the applicability of the present numerical method is verified, a series of numerical calculations
are then carried out at two approaching-flow attack angles (�=0 and 22.5◦) for systematic analysis
of the resulting drag and lift forces on the cylinder. In the program of analyses, four amplitude
velocity ratios (AR =0.1,0.3, 0.5 and 0.7) are selected with KC varying from 0.5 to 15. The
selection covers a sufficiently wide range of approaching-flow variations in common engineering
applications. Considering the interest of wind-engineering applications, in particular, the systematic
analysis deals with the condition that the approaching flow possesses a non-zero-mean velocity
and is free of flow reversal to reflect the general behavior of wind.

Typically, in the case of a zero attack angle (AR =0.5 and KC=4), Figure 5 shows the calculated
normalized iso-vorticity contours within a period of approaching-flow variation. One can see
that the motion of the generated vortices is significantly influenced by the inertia effect of the
approaching flow. When the approaching flow is subject to acceleration, the vortices are pushed
towards downstream and the wake region appears stretched. During the period of deceleration, on
the other hand, the movement of the vortices appears delayed, resulting in a wider wake region
compared with that of Karman vortices in a steady approaching flow.

Figure 6 depicts the history of the resulting normalized drag together with the theoretical
relationship of Equation (1). The comparison shows that the Morison equation (Equation (1)) well
describes the time variation of drag. In contrast, the comparison of the corresponding lift history
(Figure 7) with Equation (2) shows that the Morison relationship (Equation (2)) describes the lift
variation poorly. As � equals to a non-zero value (22.5◦), Figures 8 and 9 again show that the
corresponding drag and lift histories are adequately described by Morison equations.

On the basis of the series of numerical results, Figure 10 depicts the mean and inertia drag
coefficients (CD and C̃D) as functions of KC at various AR values in the case of a zero attack
angle. Generally, the variation of CD starts with a small quantity then increases to a peak value
as the ratio of AR/KC (physically being the normalized oscillation frequency of the approaching
flow) is close to that of the Strouhal number corresponding to the steady approaching-flow case.
As KC increases further, CD decreases and finally tends to a constant value, which is equal to
the mean drag coefficient (CD) associated with the steady approaching-flow case. In contrast, the
inertia drag coefficient decreases with an increase of KC. As KC becomes rather large, C̃D tends
to zero.

Regarding the effect of the amplitude velocity ratio (AR), Figure 10(a) shows that when AR
increases, the corresponding peak value of CD also increases. Meanwhile, the condition that CD
approaches to the steady value occurs at a relatively larger KC value. Moreover, the result in Figure
10(b) indicates that a larger AR generally leads to a greater value of C̃D.

In the case of the non-zero attack angle (�=22.5◦), on the other hand, Figures 11 and 12
illustrate the results of the corresponding mean and inertia force coefficients. It can be seen that the
variation patterns of both the drag and lift coefficients are similar to those of the drag coefficient
variations (Figure 9(a)) in the zero attack angle case.

8. DISCUSSION

Considering the fact that investigating the problem of an unsteady flow past a cylinder experi-
mentally is not easy, numerical analyses are performed in the study to analyze the flow effect of
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Figure 5. Instantaneous iso-vorticity contours within a period of approaching-flow
variation (�=0◦, AR =0.5 and KC=4).

the cylinder on a systematic basis. By comparing the numerical predictions with the measurement
results, good agreements in steady approaching-flow cases (Table I) and oscillating approaching-
flow cases with zero-mean velocities (Figure 4 and Table IV) indicate the validity and accuracy
of the present three-dimensional large eddy simulations (LESs) in predicting the behavior of flow
around a square cylinder impinged by an oscillating approaching flow.
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Figure 6. Comparison of normalized drag histories (�=0◦).
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Figure 8. Comparison of normalized drag histories (�=22.5◦).
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Figure 9. Comparison of normalized lift histories (�=22.5◦).
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Figure 10. Variations of mean and inertia drag coefficients based on Morison equations (�=0◦).

Physically, Keulegan–Carpenter number can be regarded as the ratio between the translation of
a fluid particle within a period of T and the transverse dimension of the cylinder [2]. Difficulty
is encountered, however, as KC is used to reflect the extent of approaching-flow unsteadiness in
the analysis. For example, one KC value can be the outcome of either a large Um with a small T
or a small Um with a large T , which correspond to two significantly different approaching-flow
conditions. Accordingly, the amplitude velocity ratio (AR =Um/U0) is proposed to be the second
parameter in the study to characterize the variation of the approaching flow more specifically. Once
AR is determined, a larger KC then indicates that the extent of the approaching-flow unsteadiness
becomes milder. Consequently, the program of the systematic analyses can then proceed in a more
convenient way.

The result of the instantaneous normalized iso-vorticity contours (Figure 5) in the typical case
(�=0◦, AR =0.5 and KC=4) appears quite interesting. The approaching-flow acceleration and
deceleration apparently affect the vortex motion, leading to deviation of the wake pattern from
that of common Karman vortices. Further calculations of the numerical results show that the mean
drag coefficient is 2.272. Compared with that in the steady approaching case (2.046; see Table III),
it reveals that the unsteadiness of the approaching flow tends to increase the mean drag force.
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Figure 11. Variations of mean and inertia drag coefficients based on Morison equations (�=22.5◦).
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Figure 12. Variations of mean and inertia lift coefficients based on Morison equations (�=22.5◦).

By performing least-square regressions, it shows typically in Figures 6 and 8 that the drag
histories at the two approaching-flow attack angles are well described by the Morison relationship
(Equation (1)). However, examinations on the lift histories (Figures 7 and 9) reveal that Equation (2)
fails to describe the lift history correctly when the approaching-flow attack angle is zero (Figure 7).
This agrees with what has been found in the previous studies [7–9]. Physically, the lift force is
determined based on the surface pressures on both sides of the cylinder when the attack angle is
zero. Since the cylinder sides are not directly impinged by the approaching flow, the cylinder can
hardly experience the inertia effect. This can explain why the theory of Morison equations cannot
properly describe the resulting lift variation when the attack angle is zero. For the same reason,
the frequencies of the lift histories in Figures 7 and 9 appear different.

The examples in Figures 6–9 show that there are some wiggles in the resulting drag and lift
histories. Similar types of results are also found in the measurements by Nomura et al. [9]. Further
examinations on the differential values between the calculated and theoretical results were carried
out. The shapes of all the resulting spectra (Figure 13), similar to that of white noise, reveal that
these wiggles may be attributed to the outcome of turbulence. To support this conclusion, however,
additional extensive experimental investigation will be needed.
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The general pattern of CD variations seems also interesting, as depicted in Figures 10(a)
and 11(a). The same tendency is also detected on the CL variation at a non-zero attack angle
(Figure 12(a)). Mathematically, it can be shown that the ratio of AR/KC represents the normalized
oscillation frequency of the approaching flow. As this ratio is near the Strouhal number of the
bluff-body flow, the mean drag coefficient (CD) is greatly promoted. Consequently, CD reaches a
peak value due to the occurrence of resonance. In addition, the resulting peak values of CD (Figures
10(a) and 11(a)) and CL (Figure 12(a)) increase with an increase of AR , implying that the extent
of resonance effect is enhanced when the amplitude velocity of the approaching flow becomes
greater. Moreover, when KC is sufficiently large, the extent of the approaching-flow unsteadiness
becomes weaker, leading to the result that CD (or CL) tends to the CD (or CL) value, corresponding
to the steady approaching-flow case.

Figures 10(b)–12(b) show that the tendencies of C̃D and C̃L variations are different from those
of CD and CL. Since C̃D and C̃L are related, respectively, to the inertia part of drag and lift, they
do not appear to be affected by the occurrence of resonance. As a result, C̃D and C̃L start with
large values then decrease rapidly as KC increases and eventually tend to zeros.

Based on the numerical results, finally, Figure 14 illustrates typically (AR =0.3,�=0◦) the
resulting mean and inertia coefficients as a function of KC. One can see that as Re exceeds 105,
the results are insensitive to the change of Reynolds number.

9. CONCLUSION

The unsteady forces on a square cylinder in sinusoidally oscillating flows with non-zero-mean
velocities at a zero and a typical non-zero (22.5◦) attack angles are investigated numerically.
Preliminary numerical tests have shown that the present three-dimensional LES method can be
applied to obtain the predicted results with an acceptable accuracy. By varying Keulegan–Carpenter
number (KC) and the amplitude velocity ratio (AR), which are used to characterize the unsteady
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Figure 14. Comparison of mean and inertia drag coefficients at different Reynolds numbers.

pattern of the approaching-flow variation, the resulting forces on the cylinders are analyzed
systematically. Based on the results of numerical simulations, several conclusions are drawn as
follows:

1. In the case of a zero attack angle, Morison equations can adequately describe the resulting
drag history but fail to correctly describe the lift history.

2. When the attack angle is non-zero, the Morison relationships can well describe both the
resulting drag and lift histories.

3. With a fixed value of AR , the variation of the mean drag coefficient (CD) starts with a small
quantity then increases to a peak value as the ratio of AR/KC is near that of the Strouhal
number corresponding to the steady approaching-flow case. As KC increases further, CD
decreases and finally tends to the value of the mean drag coefficient in the steady approaching
flow case. In contrast, the inertia drag coefficient (C̃D) decreases with an increase of KC. As
KC becomes rather large, C̃D tends to zero.

4. As the ratio of AR/KC is near the Strouhal number of the cylinder in the steady case, the
mean drag is promoted due to the resonance effect. The extent of enhancement becomes
greater as KC increases.

5. In the case of a non-zero attack angle, the inertia drag coefficient (C̃D) decreases with an
increase of KC and is not affected by the occurrence of resonance. As KC becomes rather
large, C̃D tends to zero.

6. The mean and inertia drag coefficients at the two selected attack angles (0 and 22.5◦) are
presented as functions of KC and AR . The presented relationships, which are insensitive to a
Reynolds number greater than 105, can be applied to evaluate the force acting on structures
with a square cross section under the action of oscillating approaching flows with non-zero
mean velocities.
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